Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Aging Cell ; 23(1): e13859, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37128843

RESUMO

Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse "ages" the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity.


Assuntos
Epigenoma , Transcriptoma , Humanos , Transcriptoma/genética , Epigenoma/genética , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Perfilação da Expressão Gênica
2.
Biol Sex Differ ; 14(1): 56, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670389

RESUMO

BACKGROUND: Exercise training elicits changes in muscle physiology, epigenomics, transcriptomics, and proteomics, with males and females exhibiting differing physiological responses to exercise training. However, the molecular mechanisms contributing to the differing adaptations between the sexes are poorly understood. METHODS: We performed a meta-analysis for sex differences in skeletal muscle DNA methylation following an endurance training intervention (Gene SMART cohort and E-MTAB-11282 cohort). We investigated for sex differences in the skeletal muscle proteome following an endurance training intervention (Gene SMART cohort). Lastly, we investigated whether the methylome and proteome are associated with baseline cardiorespiratory fitness (maximal oxygen consumption; VO2max) in a sex-specific manner. RESULTS: Here, we investigated for the first time, DNA methylome and proteome sex differences in response to exercise training in human skeletal muscle (n = 78; 50 males, 28 females). We identified 92 DNA methylation sites (CpGs) associated with exercise training; however, no CpGs changed in a sex-dependent manner. In contrast, we identified 189 proteins that are differentially expressed between the sexes following training, with 82 proteins differentially expressed between the sexes at baseline. Proteins showing the most robust sex-specific response to exercise include SIRT3, MRPL41, and MBP. Irrespective of sex, cardiorespiratory fitness was associated with robust methylome changes (19,257 CpGs) and no proteomic changes. We did not observe sex differences in the association between cardiorespiratory fitness and the DNA methylome. Integrative multi-omic analysis identified sex-specific mitochondrial metabolism pathways associated with exercise responses. Lastly, exercise training and cardiorespiratory fitness shifted the DNA methylomes to be more similar between the sexes. CONCLUSIONS: We identified sex differences in protein expression changes, but not DNA methylation changes, following an endurance exercise training intervention; whereas we identified no sex differences in the DNA methylome or proteome response to lifelong training. Given the delicate interaction between sex and training as well as the limitations of the current study, more studies are required to elucidate whether there is a sex-specific training effect on the DNA methylome. We found that genes involved in mitochondrial metabolism pathways are differentially modulated between the sexes following endurance exercise training. These results shed light on sex differences in molecular adaptations to exercise training in skeletal muscle.


Assuntos
Proteínas Musculares , Proteoma , Feminino , Masculino , Humanos , Músculo Esquelético , Exercício Físico , Metilação de DNA
3.
Exp Gerontol ; 171: 112011, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36347360

RESUMO

Phenotypic and transcriptomic evidence of early cardiac aging, and associated mechanisms, were investigated in young to middle-aged male mice (C57Bl/6; ages 8, 16, 32, 48 wks). Left ventricular gene expression (profiled via Illumina MouseWG-6 BeadChips), contractile and coronary function, and stress-resistance were assessed in Langendorff perfused hearts under normoxic conditions and following ischemic insult (20 min global ischemia-45 min reperfusion; I-R). Baseline or normoxic contractile function was unaltered by age, while cardiac and coronary 'reserves' (during ß-adrenoceptor stimulation; 1 µM isoproterenol) declined by 48 wks. Resistance to I-R injury fell from 16 to 32 wks. Age-dependent transcriptional changes In un-stressed hearts were limited to 104 genes (>1.3-fold; 0.05 FDR), supporting: up-regulated innate defenses (glutathione and xenobiotic metabolism, chemotaxis, interleukins) and catecholamine secretion; and down-regulated extracellular matrix (ECM), growth factor and survival (PI3K/Akt) signaling. In stressed (post-ischemic) myocardium, ∼15-times as many genes (1528) were age-dependent, grouped into 6 clusters (>1.3-fold change; 0.05 FDR): most changing from 16 wks (45 % up/44 % down), a further 5 % declining from 32 wks. Major age-dependent Biological Processes in I-R hearts reveal: declining ATP metabolism, oxidative phosphorylation, cardiac contraction and morphogenesis, phospholipid metabolism and calcineurin signaling; increasing proteolysis and negative control of MAPK; and mixed changes in nuclear transport and angiogenic genes. Pathway analysis supports reductions in: autophagy, stress response, ER protein processing, mRNA surveillance and ribosome/translation genes; with later falls in mitochondrial biogenesis, oxidative phosphorylation and proteasome genes in I-R hearts. Summarizing, early cardiac aging is evident from 16 to 32 wks in male mice, characterized by: declining cardiovascular reserve and stress-resistance, transcriptomic evidence of constitutive stress and altered catecholamine and survival/growth signaling in healthy hearts; and declining stress response, quality control, mitochondrial energy metabolism and cardiac modeling processes in stressed hearts. These very early changes, potentially key substrate for advanced aging, may inform approaches to healthy aging and cardioprotection in the adult heart.


Assuntos
Fenômenos Biológicos , Traumatismo por Reperfusão Miocárdica , Camundongos , Masculino , Animais , Traumatismo por Reperfusão Miocárdica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Coração , Miocárdio/metabolismo , Controle de Qualidade
4.
PLoS One ; 17(9): e0273925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048851

RESUMO

Skeletal muscle unloading due to joint immobilization induces muscle atrophy, which has primarily been attributed to reductions in protein synthesis in humans. However, no study has evaluated the skeletal muscle proteome response to limb immobilization using SWATH proteomic methods. This study characterized the shifts in individual muscle protein abundance and corresponding gene sets after 3 and 14 d of unilateral lower limb immobilization in otherwise healthy young men. Eighteen male participants (25.4 ±5.5 y, 81.2 ±11.6 kg) underwent 14 d of unilateral knee-brace immobilization with dietary provision and following four-weeks of training to standardise acute training history. Participant phenotype was characterized before and after 14 days of immobilization, and muscle biopsies were obtained from the vastus lateralis at baseline (pre-immobilization) and at 3 and 14 d of immobilization for analysis by SWATH-MS and subsequent gene-set enrichment analysis (GSEA). Immobilization reduced vastus group cross sectional area (-9.6 ±4.6%, P <0.0001), immobilized leg lean mass (-3.3 ±3.9%, P = 0.002), unilateral 3-repetition maximum leg press (-15.6 ±9.2%, P <0.0001), and maximal oxygen uptake (-2.9 ±5.2%, P = 0.044). SWATH analyses consistently identified 2281 proteins. Compared to baseline, two and 99 proteins were differentially expressed (FDR <0.05) after 3 and 14 d of immobilization, respectively. After 14 d of immobilization, 322 biological processes were different to baseline (FDR <0.05, P <0.001). Most (77%) biological processes were positively enriched and characterized by cellular stress, targeted proteolysis, and protein-DNA complex modifications. In contrast, mitochondrial organization and energy metabolism were negatively enriched processes. This study is the first to use data independent proteomics and GSEA to show that unilateral lower limb immobilization evokes mitochondrial dysfunction, cellular stress, and proteolysis. Through GSEA and network mapping, we identify 27 hub proteins as potential protein/gene candidates for further exploration.


Assuntos
Força Muscular , Músculo Esquelético , Proteoma , Humanos , Imobilização/fisiologia , Extremidade Inferior/fisiologia , Masculino , Mitocôndrias/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Proteólise , Proteoma/metabolismo , Proteômica , Músculo Quadríceps/fisiologia , Estresse Fisiológico
5.
J Physiol ; 600(8): 1889-1911, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156712

RESUMO

Circulating bilirubin is associated with reduced serum cholesterol concentrations in humans and in hyperbilirubinaemic Gunn rats. However, mechanisms contributing to hypocholesterolaemia remain unknown. Therefore, this study aimed to investigate cholesterol synthesis, transport and excretion in mutant Gunn rats. Adult Gunn and control rats were assessed for daily faecal sterol excretion using metabolic cages, and water was supplemented with [1-13 C]-acetate to determine cholesterol synthesis. Bile was collected to measure biliary lipid secretion. Serum and liver were collected for biochemical analysis and for gene/protein expression using RT-qPCR and western blot, respectively. Additionally, serum was collected and analysed from juvenile rats. A significant interaction of sex, age and phenotype on circulating lipids was found with adult female Gunn rats reporting significantly lower cholesterol and phospholipids. Female Gunn rats also demonstrated elevated cholesterol synthesis, greater biliary lipid secretion and increased total faecal cholesterol and bile acid excretion. Furthermore, they possessed increased hepatic low-density lipoprotein (LDL) receptor and SREBP2 expression. In contrast, there were no changes to sterol metabolism in adult male Gunn rats. This is the first study to demonstrate elevated faecal sterol excretion in female hyperbilirubinaemic Gunn rats. Increased sterol excretion creates a negative intestinal sterol balance that is compensated for by increased cholesterol synthesis and LDL receptor expression. Therefore, reduced circulating cholesterol is potentially caused by increased hepatic uptake via the LDL receptor. Future studies are required to further evaluate the sexual dimorphism of this response and whether similar findings occur in females with benign unconjugated hyperbilirubinaemia (Gilbert's syndrome). KEY POINTS: Female adult hyperbilirubinaemic (Gunn) rats demonstrated lower circulating cholesterol, corroborating human studies that report a negative association between bilirubin and cholesterol concentrations. Furthermore, female Gunn rats had elevated sterol excretion creating a negative intestinal sterol balance that was compensated for by elevated cholesterol synthesis and increased hepatic low-density lipoprotein (LDL) receptor expression. Therefore, elevated LDL receptor expression potentially leads to reduced circulating cholesterol levels in female Gunn rats providing an explanation for the hypocholesterolaemia observed in humans with elevated bilirubin levels. This study also reports a novel interaction of sex with the hyperbilirubinaemic phenotype on sterol metabolism because changes were only reported in females and not in male Gunn rats. Future studies are required to further evaluate the sexual dimorphism of this response and whether similar findings occur in females with benign unconjugated hyperbilirubinaemia (Gilbert's syndrome).


Assuntos
Doença de Gilbert , Hipercolesterolemia , Animais , Bilirrubina/metabolismo , Colesterol/metabolismo , Feminino , Doença de Gilbert/metabolismo , Hiperbilirrubinemia/metabolismo , Hipercolesterolemia/metabolismo , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Masculino , Ratos , Ratos Gunn , Receptores de LDL/genética , Receptores de LDL/metabolismo , Caracteres Sexuais , Esteróis/metabolismo
6.
PLoS One ; 17(1): e0261723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025912

RESUMO

Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.


Assuntos
Treino Aeróbico/métodos , Elevação dos Membros Posteriores/métodos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transcriptoma/fisiologia , Adaptação Fisiológica , Animais , Terapia por Exercício , Feminino , Biblioteca Genômica , Humanos , Masculino , Condicionamento Físico Animal , Ratos , Análise de Sequência de RNA
7.
Clin Epigenetics ; 13(1): 202, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732242

RESUMO

Nearly all human complex traits and diseases exhibit some degree of sex differences, with epigenetics being one of the main contributing factors. Various tissues display sex differences in DNA methylation; however, this has not yet been explored in skeletal muscle, despite skeletal muscle being among the tissues with the most transcriptomic sex differences. For the first time, we investigated the effect of sex on autosomal DNA methylation in human skeletal muscle across three independent cohorts (Gene SMART, FUSION, and GSE38291) using a meta-analysis approach, totalling 369 human muscle samples (222 males and 147 females), and integrated this with known sex-biased transcriptomics. We found 10,240 differentially methylated regions (DMRs) at FDR < 0.005, 94% of which were hypomethylated in males, and gene set enrichment analysis revealed that differentially methylated genes were involved in muscle contraction and substrate metabolism. We then investigated biological factors underlying DNA methylation sex differences and found that circulating hormones were not associated with differential methylation at sex-biased DNA methylation loci; however, these sex-specific loci were enriched for binding sites of hormone-related transcription factors (with top TFs including androgen (AR), estrogen (ESR1), and glucocorticoid (NR3C1) receptors). Fibre type proportions were associated with differential methylation across the genome, as well as across 16% of sex-biased DNA methylation loci (FDR < 0.005). Integration of DNA methylomic results with transcriptomic data from the GTEx database and the FUSION cohort revealed 326 autosomal genes that display sex differences at both the epigenome and transcriptome levels. Importantly, transcriptional sex-biased genes were overrepresented among epigenetic sex-biased genes (p value = 4.6e-13), suggesting differential DNA methylation and gene expression between male and female muscle are functionally linked. Finally, we validated expression of three genes with large effect sizes (FOXO3A, ALDH1A1, and GGT7) in the Gene SMART cohort with qPCR. GGT7, involved in antioxidant metabolism, displays male-biased expression as well as lower methylation in males across the three cohorts. In conclusion, we uncovered 8420 genes that exhibit DNA methylation differences between males and females in human skeletal muscle that may modulate mechanisms controlling muscle metabolism and health.


Assuntos
Epigenoma/fisiologia , Perfilação da Expressão Gênica/métodos , Músculo Esquelético/metabolismo , Fatores Sexuais , Ciclização de Substratos/fisiologia , Idoso , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia
8.
J Cachexia Sarcopenia Muscle ; 12(4): 1064-1078, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34196129

RESUMO

BACKGROUND: Knowledge of age-related DNA methylation changes in skeletal muscle is limited, yet this tissue is severely affected by ageing in humans. METHODS: We conducted a large-scale epigenome-wide association study meta-analysis of age in human skeletal muscle from 10 studies (total n = 908 muscle methylomes from men and women aged 18-89 years old). We explored the genomic context of age-related DNA methylation changes in chromatin states, CpG islands, and transcription factor binding sites and performed gene set enrichment analysis. We then integrated the DNA methylation data with known transcriptomic and proteomic age-related changes in skeletal muscle. Finally, we updated our recently developed muscle epigenetic clock (https://bioconductor.org/packages/release/bioc/html/MEAT.html). RESULTS: We identified 6710 differentially methylated regions at a stringent false discovery rate <0.005, spanning 6367 unique genes, many of which related to skeletal muscle structure and development. We found a strong increase in DNA methylation at Polycomb target genes and bivalent chromatin domains and a concomitant decrease in DNA methylation at enhancers. Most differentially methylated genes were not altered at the mRNA or protein level, but they were nonetheless strongly enriched for genes showing age-related differential mRNA and protein expression. After adding a substantial number of samples from five datasets (+371), the updated version of the muscle clock (MEAT 2.0, total n = 1053 samples) performed similarly to the original version of the muscle clock (median of 4.4 vs. 4.6 years in age prediction error), suggesting that the original version of the muscle clock was very accurate. CONCLUSIONS: We provide here the most comprehensive picture of DNA methylation ageing in human skeletal muscle and reveal widespread alterations of genes involved in skeletal muscle structure, development, and differentiation. We have made our results available as an open-access, user-friendly, web-based tool called MetaMeth (https://sarah-voisin.shinyapps.io/MetaMeth/).


Assuntos
Metilação de DNA , Proteômica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético , Adulto Jovem
9.
J Biomed Sci ; 28(1): 37, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985508

RESUMO

BACKGROUND: Low cardiorespiratory fitness (V̇O2peak) is highly associated with chronic disease and mortality from all causes. Whilst exercise training is recommended in health guidelines to improve V̇O2peak, there is considerable inter-individual variability in the V̇O2peak response to the same dose of exercise. Understanding how genetic factors contribute to V̇O2peak training response may improve personalisation of exercise programs. The aim of this study was to identify genetic variants that are associated with the magnitude of V̇O2peak response following exercise training. METHODS: Participant change in objectively measured V̇O2peak from 18 different interventions was obtained from a multi-centre study (Predict-HIIT). A genome-wide association study was completed (n = 507), and a polygenic predictor score (PPS) was developed using alleles from single nucleotide polymorphisms (SNPs) significantly associated (P < 1 × 10-5) with the magnitude of V̇O2peak response. Findings were tested in an independent validation study (n = 39) and compared to previous research. RESULTS: No variants at the genome-wide significance level were found after adjusting for key covariates (baseline V̇O2peak, individual study, principal components which were significantly associated with the trait). A Quantile-Quantile plot indicates there was minor inflation in the study. Twelve novel loci showed a trend of association with V̇O2peak response that reached suggestive significance (P < 1 × 10-5). The strongest association was found near the membrane associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2) gene (rs6959961, P = 2.61 × 10-7). A PPS created from the 12 lead SNPs was unable to predict V̇O2peak response in a tenfold cross validation, or in an independent (n = 39) validation study (P > 0.1). Significant correlations were found for beta coefficients of variants in the Predict-HIIT (P < 1 × 10-4) and the validation study (P < × 10-6), indicating that general effects of the loci exist, and that with a higher statistical power, more significant genetic associations may become apparent. CONCLUSIONS: Ongoing research and validation of current and previous findings is needed to determine if genetics does play a large role in V̇O2peak response variance, and whether genomic predictors for V̇O2peak response trainability can inform evidence-based clinical practice. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR), Trial Id: ACTRN12618000501246, Date Registered: 06/04/2018, http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374601&isReview=true .


Assuntos
Aptidão Cardiorrespiratória/fisiologia , Exercício Físico/fisiologia , Variação Genética , Estudo de Associação Genômica Ampla , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Life Sci ; 274: 119253, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647270

RESUMO

AIM: Exercise is cardioprotective, though optimal interventions are unclear. We assessed duration dependent effects of exercise on myocardial ischemia-reperfusion (I-R) injury, kinase signaling and gene expression. METHODS: Responses to brief (2 day; 2EX), intermediate (7 and 14 day; 7EX and 14EX) and extended (28 day; 28EX) voluntary wheel running (VWR) were studied in male C57Bl/6 mice. Cardiac function, I-R tolerance and survival kinase signaling were assessed in perfused hearts. KEY FINDINGS: Mice progressively increased running distances and intensity, from 2.4 ± 0.2 km/day (0.55 ± 0.04 m/s) at 2-days to 10.6 ± 0.4 km/day (0.72 ± 0.06 m/s) after 28-days. Myocardial mass and contractility were modified at 14-28 days VWR. Cardioprotection was not 'dose-dependent', with I-R tolerance enhanced within 7 days and not further improved with greater VWR duration, volume or intensity. Protection was associated with AKT, ERK1/2 and GSK3ß phosphorylation, with phospho-AMPK selectively enhanced with brief VWR. Gene expression was duration-dependent: 7 day VWR up-regulated glycolytic (Pfkm) and down-regulated maladaptive remodeling (Mmp2) genes; 28 day VWR up-regulated caveolar (Cav3), mitochondrial biogenesis (Ppargc1a, Sirt3) and titin (Ttn) genes. Interestingly, I-R tolerance in 2EX/2SED groups improved vs. groups subjected to longer sedentariness, suggesting transient protection on transition to housing with running wheels. SIGNIFICANCE: Cardioprotection is induced with as little as 7 days VWR, yet not enhanced with further or faster running. This protection is linked to survival kinase phospho-regulation (particularly AKT and ERK1/2), with glycolytic, mitochondrial, caveolar and myofibrillar gene changes potentially contributing. Intriguingly, environmental enrichment may also protect via similar kinase regulation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Isquemia Miocárdica/prevenção & controle , Condicionamento Físico Animal , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Glicogênio Sintase Quinase 3 beta/genética , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética
11.
Exp Physiol ; 106(3): 714-725, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486778

RESUMO

NEW FINDINGS: What is the central question of this study? The extent to which genetics determines adaptation to endurance versus resistance exercise is unclear. Previously, a divergent selective breeding rat model showed that genetic factors play a major role in the response to aerobic training. Here, we asked: do genetic factors that underpin poor adaptation to endurance training affect adaptation to functional overload? What is the main finding and its importance? Our data show that heritable factors in low responders to endurance training generated differential gene expression that was associated with impaired skeletal muscle hypertrophy. A maladaptive genotype to endurance exercise appears to dysregulate biological processes responsible for mediating exercise adaptation, irrespective of the mode of contraction stimulus. ABSTRACT: Divergent skeletal muscle phenotypes result from chronic resistance-type versus endurance-type contraction, reflecting the principle of training specificity. Our aim was to determine whether there is a common set of genetic factors that influence skeletal muscle adaptation to divergent contractile stimuli. Female rats were obtained from a genetically heterogeneous rat population and were selectively bred from high responders to endurance training (HRT) or low responders to endurance training (LRT; n = 6/group; generation 19). Both groups underwent 14 days of synergist ablation to induce functional overload of the plantaris muscle before comparison to non-overloaded controls of the same phenotype. RNA sequencing was performed to identify Gene Ontology biological processes with differential (LRT vs. HRT) gene set enrichment. We found that running distance, determined in advance of synergist ablation, increased in response to aerobic training in HRT but not LRT (65 ± 26 vs. -6 ± 18%, mean ± SD, P < 0.0001). The hypertrophy response to functional overload was attenuated in LRT versus HRT (20.1 ± 5.6 vs. 41.6 ± 16.1%, P = 0.015). Between-group differences were observed in the magnitude of response of 96 upregulated and 101 downregulated pathways. A further 27 pathways showed contrasting upregulation or downregulation in LRT versus HRT in response to functional overload. In conclusion, low responders to aerobic endurance training were also low responders for compensatory hypertrophy, and attenuated hypertrophy was associated with differential gene set regulation. Our findings suggest that genetic factors that underpin aerobic training maladaptation might also dysregulate the transcriptional regulation of biological processes that contribute to adaptation to mechanical overload.


Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Adaptação Fisiológica/fisiologia , Animais , Feminino , Humanos , Hipertrofia/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Resistência Física , Ratos
12.
J Cachexia Sarcopenia Muscle ; 11(4): 887-898, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32067420

RESUMO

BACKGROUND: Ageing is associated with DNA methylation changes in all human tissues, and epigenetic markers can estimate chronological age based on DNA methylation patterns across tissues. However, the construction of the original pan-tissue epigenetic clock did not include skeletal muscle samples and hence exhibited a strong deviation between DNA methylation and chronological age in this tissue. METHODS: To address this, we developed a more accurate, muscle-specific epigenetic clock based on the genome-wide DNA methylation data of 682 skeletal muscle samples from 12 independent datasets (18-89 years old, 22% women, 99% Caucasian), all generated with Illumina HumanMethylation (HM) arrays (HM27, HM450, or HMEPIC). We also took advantage of the large number of samples to conduct an epigenome-wide association study of age-associated DNA methylation patterns in skeletal muscle. RESULTS: The newly developed clock uses 200 cytosine-phosphate-guanine dinucleotides to estimate chronological age in skeletal muscle, 16 of which are in common with the 353 cytosine-phosphate-guanine dinucleotides of the pan-tissue clock. The muscle clock outperformed the pan-tissue clock, with a median error of only 4.6 years across datasets (vs. 13.1 years for the pan-tissue clock, P < 0.0001) and an average correlation of ρ = 0.62 between actual and predicted age across datasets (vs. ρ = 0.51 for the pan-tissue clock). Lastly, we identified 180 differentially methylated regions with age in skeletal muscle at a false discovery rate < 0.005. However, gene set enrichment analysis did not reveal any enrichment for gene ontologies. CONCLUSIONS: We have developed a muscle-specific epigenetic clock that predicts age with better accuracy than the pan-tissue clock. We implemented the muscle clock in an r package called Muscle Epigenetic Age Test available on Bioconductor to estimate epigenetic age in skeletal muscle samples. This clock may prove valuable in assessing the impact of environmental factors, such as exercise and diet, on muscle-specific biological ageing processes.


Assuntos
Epigenômica/métodos , Músculo Esquelético/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
BMC Genomics ; 18(Suppl 8): 821, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143594

RESUMO

The gene SMART (genes and the Skeletal Muscle Adaptive Response to Training) Study aims to identify genetic variants that predict the response to both a single session of High-Intensity Interval Exercise (HIIE) and to four weeks of High-Intensity Interval Training (HIIT). While the training and testing centre is located at Victoria University, Melbourne, three other centres have been launched at Bond University, Queensland University of Technology, Australia, and the University of Brighton, UK. Currently 39 participants have already completed the study and the overall aim is to recruit 200 moderately-trained, healthy Caucasians participants (all males 18-45 y, BMI < 30). Participants will undergo exercise testing and exercise training by an identical exercise program. Dietary habits will be assessed by questionnaire and dietitian consultation. Activity history is assessed by questionnaire and current activity level is assessed by an activity monitor. Skeletal muscle biopsies and blood samples will be collected before, immediately after and 3 h post HIIE, with the fourth resting biopsy and blood sample taken after four weeks of supervised HIIT (3 training sessions per week). Each session consists of eight to fourteen 2-min intervals performed at the pre-training lactate threshold (LT) power plus 40 to 70% of the difference between pre-training lactate threshold (LT) and peak aerobic power (Wpeak). A number of muscle and blood analyses will be performed, including (but not limited to) genotyping, mitochondrial respiration, transcriptomics, protein expression analyses, and enzyme activity. The participants serve as their own controls. Even though the gene SMART study is tightly controlled, our preliminary findings still indicate considerable individual variability in both performance (in-vivo) and muscle (in-situ) adaptations to similar training. More participants are required to allow us to better investigate potential underlying genetic and molecular mechanisms responsible for this individual variability.


Assuntos
Adaptação Fisiológica/genética , Exercício Físico , Músculo Esquelético/fisiologia , Adolescente , Adulto , Biomarcadores/sangue , Respiração Celular , Feminino , Perfilação da Expressão Gênica , Técnicas de Genotipagem , Treinamento Intervalado de Alta Intensidade , Humanos , Masculino , Mitocôndrias/metabolismo , Adulto Jovem
14.
BMC Genomics ; 18(Suppl 8): 831, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143670

RESUMO

BACKGROUND: Cardiorespiratory fitness (VO2max) is an excellent predictor of chronic disease morbidity and mortality risk. Guidelines recommend individuals undertake exercise training to improve VO2max for chronic disease reduction. However, there are large inter-individual differences between exercise training responses. This systematic review is aimed at identifying genetic variants that are associated with VO2max trainability. METHODS: Peer-reviewed research papers published up until October 2016 from four databases were examined. Articles were included if they examined genetic variants, incorporated a supervised aerobic exercise intervention; and measured VO2max/VO2peak pre and post-intervention. RESULTS: Thirty-five articles describing 15 cohorts met the criteria for inclusion. The majority of studies used a cross-sectional retrospective design. Thirty-two studies researched candidate genes, two used Genome-Wide Association Studies (GWAS), and one examined mRNA gene expression data, in addition to a GWAS. Across these studies, 97 genes to predict VO2max trainability were identified. Studies found phenotype to be dependent on several of these genotypes/variants, with higher responders to exercise training having more positive response alleles than lower responders (greater gene predictor score). Only 13 genetic variants were reproduced by more than two authors. Several other limitations were noted throughout these studies, including the robustness of significance for identified variants, small sample sizes, limited cohorts focused primarily on Caucasian populations, and minimal baseline data. These factors, along with differences in exercise training programs, diet and other environmental gene expression mediators, likely influence the ideal traits for VO2max trainability. CONCLUSION: Ninety-seven genes have been identified as possible predictors of VO2max trainability. To verify the strength of these findings and to identify if there are more genetic variants and/or mediators, further tightly-controlled studies that measure a range of biomarkers across ethnicities are required.


Assuntos
Aptidão Cardiorrespiratória , Exercício Físico/fisiologia , Consumo de Oxigênio/genética , Técnicas de Genotipagem , Humanos
15.
Sports Med Open ; 3(1): 20, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28523640

RESUMO

BACKGROUND: Achilles tendinopathy is the most prevalent tendon disorder in people engaged in running and jumping sports. Aetiology of Achilles tendinopathy is complex and requires comprehensive research of contributing risk factors. There is relatively little research focussing on potential biomedical risk factors for Achilles tendinopathy. The purpose of this systematic review is to identify studies and summarise current knowledge of biomedical risk factors of Achilles tendinopathy in physically active people. METHODS: Research databases were searched for relevant articles followed by assessment in accordance with PRISMA statement and standards of Cochrane collaboration. Levels of evidence and quality assessment designation were implemented in accordance with OCEBM levels of evidence and Newcastle-Ottawa Quality Assessment Scale, respectively. RESULTS: A systematic review of the literature identified 22 suitable articles. All included studies had moderate level of evidence (2b) with the Newcastle-Ottawa score varying between 6 and 9. The majority (17) investigated genetic polymorphisms involved in tendon structure and homeostasis and apoptosis and inflammation pathways. Overweight as a risk factor of Achilles tendinopathy was described in five included studies that investigated non-genetic factors. COL5A1 genetic variants were the most extensively studied, particularly in association with genetic variants in the genes involved in regulation of cell-matrix interaction in tendon and matrix homeostasis. It is important to investigate connections and pathways whose interactions might be disrupted and therefore alter collagen structure and lead to the development of pathology. Polymorphisms in genes involved in apoptosis and inflammation, and Achilles tendinopathy did not show strong association and, however, should be considered for further investigation. CONCLUSIONS: This systematic review suggests that biomedical risk factors are an important consideration in the future study of propensity to the development of Achilles tendinopathy. The presence of certain medical comorbidities and genetic markers should be considered when contemplating the aetiology of Achilles tendinopathy. Further elucidation of biomedical risk factors will aid in the understanding of tendon pathology and patient risk, thereby informing prevention and management strategies for Achilles tendinopathy. TRIAL REGISTRATION: PROSPERO CRD42016036558.

16.
Purinergic Signal ; 13(1): 27-49, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27696085

RESUMO

Influences of adenosine 2A receptor (A2AR) activity on the cardiac transcriptome and genesis of endotoxemic myocarditis are unclear. We applied transcriptomic profiling (39 K Affymetrix arrays) to identify A2AR-sensitive molecules, revealed by receptor knockout (KO), in healthy and endotoxemic hearts. Baseline cardiac function was unaltered and only 37 A2AR-sensitive genes modified by A2AR KO (≥1.2-fold change, <5 % FDR); the five most induced are Mtr, Ppbp, Chac1, Ctsk and Cnpy2 and the five most repressed are Hp, Yipf4, Acta1, Cidec and Map3k2. Few canonical paths were impacted, with altered Gnb1, Prkar2b, Pde3b and Map3k2 (among others) implicating modified G protein/cAMP/PKA and cGMP/NOS signalling. Lipopolysaccharide (LPS; 20 mg/kg) challenge for 24 h modified >4100 transcripts in wild-type (WT) myocardium (≥1.5-fold change, FDR < 1 %); the most induced are Lcn2 (+590); Saa3 (+516); Serpina3n (+122); Cxcl9 (+101) and Cxcl1 (+89) and the most repressed are Car3 (-38); Adipoq (-17); Atgrl1/Aplnr (-14); H19 (-11) and Itga8 (-8). Canonical responses centred on inflammation, immunity, cell death and remodelling, with pronounced amplification of toll-like receptor (TLR) and underlying JAK-STAT, NFκB and MAPK pathways, and a 'cardio-depressant' profile encompassing suppressed ß-adrenergic, PKA and Ca2+ signalling, electromechanical and mitochondrial function (and major shifts in transcripts impacting function/injury including Lcn2, S100a8/S100a9, Icam1/Vcam and Nox2 induction, and Adipoq, Igf1 and Aplnr repression). Endotoxemic responses were selectively modified by A2AR KO, supporting inflammatory suppression via A2AR sensitive shifts in regulators of NFκB and JAK-STAT signalling (IκBζ, IκBα, STAT1, CDKN1a and RRAS2) without impacting the cardio-depressant gene profile. Data indicate A2ARs exert minor effects in un-stressed myocardium and selectively suppress NFκB and JAK-STAT signalling and cardiac injury without influencing cardiac depression in endotoxemia.


Assuntos
Endotoxemia/metabolismo , Miocárdio/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Endotoxemia/genética , Perfilação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Janus Quinase 1/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptor A2A de Adenosina/genética , Fatores de Transcrição STAT/metabolismo , Transcriptoma
17.
PLoS One ; 9(9): e102783, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25238588

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are known to regulate many biological processes and their dysregulation has been associated with a variety of diseases including Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). The recent discovery of stable and reproducible miRNA in plasma has raised the possibility that circulating miRNAs may serve as novel diagnostic markers. The objective of this study was to determine the role of plasma miRNA in CFS/ME. RESULTS: Using Illumina high-throughput sequencing we identified 19 miRNAs that were differentially expressed in the plasma of CFS/ME patients in comparison to non-fatigued controls. Following RT-qPCR analysis, we were able to confirm the significant up-regulation of three miRNAs (hsa-miR-127-3p, hsa-miR-142-5p and hsa-miR-143-3p) in the CFS/ME patients. CONCLUSION: Our study is the first to identify circulating miRNAs from CFS/ME patients and also to confirm three differentially expressed circulating miRNAs in CFS/ME patients, providing a basis for further study to find useful CFS/ME biomarkers.


Assuntos
Síndrome de Fadiga Crônica/genética , MicroRNAs/genética , Adulto , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/sangue , Pessoa de Meia-Idade , Regulação para Cima
18.
Am J Physiol Heart Circ Physiol ; 307(8): H1142-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128172

RESUMO

Mildly elevated circulating unconjugated bilirubin (UCB) is associated with protection against hypertension and ischemic heart disease. We assessed whether endogenously elevated bilirubin in Gunn rats modifies cardiovascular function and resistance to ischemic insult. Hearts were assessed ex vivo (Langendorff perfusion) and in vivo (Millar catheterization and echocardiography), and left ventricular myocardial gene expression was measured via quantitative real-time PCR. Ex vivo analysis revealed reduced intrinsic contractility in the Gunn myocardium (+dP/dt: 1,976 ± 622 vs. 2,907 ± 334 mmHg/s, P < 0.01; -dP/dt: -1,435 ± 372 vs. -2,234 ± 478 mmHg/s, P < 0.01), which correlated positively with myocardial UCB concentration (P < 0.05). In vivo analyses showed no changes in left ventricular contractile parameters and ejection (fractional shortening and ejection fraction). However, Gunn rats exhibited reductions in the rate of aortic pressure development (3,008 ± 461 vs. 4,452 ± 644 mmHg/s, P < 0.02), mean aortic velocity (439 ± 64 vs. 644 ± 62 mm/s, P < 0.01), and aortic volume time integral pressure gradient (2.32 ± 0.65 vs. 5.72 ± 0.74 mmHg, P < 0.01), in association with significant aortic dilatation (12-24% increase in aortic diameter, P < 0.05). Ex vivo Gunn hearts exhibited improved ventricular function after 35 min of ischemia and 90 min of reperfusion (63 ± 14 vs. 35 ± 12%, P < 0.01). These effects were accompanied by increased glutathione peroxidase and reduced superoxide dismutase and phospholamban gene expression in Gunn rat myocardium (P < 0.05). These data collectively indicate that hyperbilirubinemia in Gunn rats 1) reduces intrinsic cardiac contractility, which is compensated for in vivo; 2) induces aortic dilatation, which may beneficially influence aortic ejection velocities and pressures; and 3) may improve myocardial stress resistance in association with beneficial transcriptional changes. These effects may contribute to protection from cardiovascular disease with elevated bilirubin.


Assuntos
Aorta/fisiopatologia , Hiperbilirrubinemia/fisiopatologia , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Função Ventricular Esquerda , Animais , Bilirrubina/sangue , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Ratos , Ratos Gunn , Volume Sistólico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Vasodilatação
19.
Am J Physiol Heart Circ Physiol ; 307(6): H895-903, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25063791

RESUMO

Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-ß-cyclodextrin (MßCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02-1.0 mM MßCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MßCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10-30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 µM MßCD, whereas SLP was more robust and only inhibited with ≥200 µM MßCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression.


Assuntos
Cardiotônicos/farmacologia , Caveolina 3/metabolismo , Colesterol/metabolismo , Morfina/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Sarcolema/efeitos dos fármacos , Animais , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Caveolina 3/deficiência , Caveolina 3/genética , Linhagem Celular , Colesterol/deficiência , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Pressão Ventricular/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
20.
J Appl Physiol (1985) ; 116(3): 274-87, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24311745

RESUMO

Reprogramming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time course-dependent changes in the muscular transcriptome after an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h postexercise from eight healthy, endurance-trained men. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three hours postexercise, 102 gene sets were upregulated [family wise error rate (FWER), P < 0.05], including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1 signaling. Forty-eight hours postexercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were upregulated. Ninety-six hours postexercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were upregulated, including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h postexercise transcriptome indicates substantial transcriptional activity potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.


Assuntos
Adaptação Fisiológica/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Recuperação de Função Fisiológica/fisiologia , Transcriptoma/fisiologia , Adulto , Teste de Esforço/métodos , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Análise Serial de Proteínas/métodos , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...